
QoS Catalyst 6500 platformon

Balla Attila
CCIE #7264

balla.attila@synergon.hu

Tartalom

� Bevezető

� QoS modellek

� Catalyst 6500 és QoS
�Interface Modules

Bevezető

� Miért van szükség QoS-re?
�Sávszélesség
�Torlódás

� Miért pont Catalyst 6500-n?
�Egyik legelterjedtebb L3 switch
�Többféle Supervisor

– Sup2: PFC2+MSFC2
– Sup32: PFC3B+MSFC2a
– Sup720: PFC3[A|B|BXL]+MSFC3

– PFC-3C, 3CXL

QoS Models

No state

Best Effort

Per-flow state

IntServ / RSVP

Aggregated

state

DiffServ

1. The original IP service

RFC791 2. First efforts at IP QoS

RFC1633
3. Seeking simplicity and scale

RFC2474, RFC2475

Time

4. Bandwidth Optimization & e2e SLAs

((IntServ+DiffServ+ Traffic Engineering))

Simple DiffServ Recipe

� Edge
�Classification

�Marking/Coloring

�Optional policing/shaping

�Congestion avoidance
– WRED

�Congestion management
– Queuing

� Core
�Congestion avoidance

– WRED

�Congestion management
– Queuing

Emlékeztető

� Catalyst 6500 architektúra
�2004. Salgóbánya

� Sok funkció HW-ből
�L2 forwarding, L3 forwarding, ACL, Netflow
�Policy Feature Card

– CAM, TCAM
– Nagysebességű memória

� Mi a helyzet a QoS-sel?

Supervisor Engine 2 – PFC2

Supervisor Engine 720 – PFC3

Policy Feature Card

� Daughter card for supervisor
engine

� Provides the key components
enabling highperformance
hardware packet processing
� 15/30Mpps

� Supervisor 2 supports PFC2
� Supervisor 720 supports:

� PFC3A
� PFC3B
� PFC3BXL

Key Hardware-Enabled Features:
� Layer 2 switching
� IPv4 unicast forwarding
� IPv4 multicast forwarding
� Security ACLs
� QoS/policing
� NetFlow statistics
� PFC3 Also Supports:

� IPv6, MPLS, Bidir PIM,
NAT/PAT, GRE/v6 tunnels

Cat6500 QoS Model

� Actions by PFC
� Classification L2/L3/L4
� Policing
� Mark down

� Actions at ingress
� Scheduling
� CoS overwriting

� Actions at Egress
� Rewrite ToS
� Scheduling – each queue has

configurable size and thresholds
� WRED, Tail-drop

QoS Modes

� Disabled – by default
� CoS, DSCP, IP Precedence values are preserved

� Enabled
� mls qos

� Trust port
– mls qos trust

� PFC3 assigns a priority to each frame
– Based on QoS Policies
– Based on CoS, DSCP, IP Precedence

� Rewrite CoS, DSCP, IP Precedence fields
– no mls qos rewrite ip dscp

� Queueing-only
� mls qos queueing-only

� CoS, DSCP, IP Precedence values are preserved

Input Queue Scheduling

� Input scheduling only performed if port configured
to trust COS
� Scheduling based on input COS
� Implements tail-drop thresholds
� Thresholds at which packets with different COS values are dropped

� Queue structure example: 1p1q4t
� One strict-priority queue, one standard queue with four tail-drop thresholds
� Some Line Cards support WRED
� show queueing interface GigabitEthernet1/1

� rcv-queue threshold

FAQ: What Are The Buffer Sizes and Queue Structures for the Different Modules?
http://www.cisco.com/warp/public/cc/pd/si/casi/ca6000/prodlit/buffe_wp.pdf

Input Queue Scheduling Details

Classification

� Selects traffic for further QoS processing
�Marking

�Policing

� Based on
�Port trust

�QoS ACLs

�Policing mark-down

Marking

� Untrusted port
�Set a default QoS value

� Trusted port
�Use the marking (COS, precedence, DSCP) provided by
upstream device

� QoS ACLs
�Set QoS values based on standard or extended ACL match

Trust

internal

dscp = 0

internal

dscp = 0

802.1p = 1802.1p = 1
Un-

trusted
Re-

write
IPP=5IPP=5

802.1p = 0802.1p = 0
DSCP=44DSCP=44

IPP=0IPP=0 DSCP=0DSCP=0

internal

dscp = 8

internal

dscp = 8

Trust

CoS
Re-

write

802.1p = 1802.1p = 1802.1p = 1802.1p = 1

IPP=5IPP=5 DSCP=44DSCP=44
IPP=1IPP=1 DSCP=8DSCP=8

internal

dscp = 40

internal

dscp = 40

Trust

IPP
Re-

write

802.1p = 5802.1p = 5802.1p = 1802.1p = 1

IPP=5IPP=5 DSCP=44DSCP=44
IPP=5IPP=5 DSCP=40DSCP=40

internal

dscp = 44

internal

dscp = 44

Trust

DSCP
Re-

write

802.1p = 1802.1p = 1

IPP=5IPP=5 DSCP=44DSCP=44
802.1p = 5802.1p = 5

IPP=5IPP=5 DSCP=44DSCP=44

QoS ACLs

� Used to classify traffic based on Layer 3 and Layer 4
information

� Hardware support for standard and extended IPv4 and MAC
QoS ACLs

� Use QoS TCAM and other ACL resources to classify traffic for
marking and policing

� Dedicated QoS TCAM
� 32K entries/4K masks

� Share other resources (LOUs and labels) with security ACLs
� show tcam counts

Marking with QoS ACL

� Marking is implemented with the MQC set and police
commands

� It does not use the CAR rate-limit command
� Supported by PFC3

� set commands
– set ip precedence

– set ip dscp

– set mpls exp

� police commands
– set-prec-transmit

– set-dscp-transmit

– set-mpls-experimental-imposition-transmit

– policed-dscp-transmit

Vlan Based QoS

Each physical Catalyst port can optionally be configured for VLAN-based
QoS. In this case, a service-policy is applied to the VLAN interface.

Internal

DSCP = z

Internal

DSCP = z
CoS = m(z)

ToS = z

CoS = m(z)

ToS = z

QoS

Policies

Access

Re-

write

PFC3
6500

Access

Trunk

Trunk

VLAN

VLAN

Vlan Based QoS

interface GigabitEthernet4/1

description Customer facing interface

switchport mode access

switchport access vlan 100

mls qos vlan-based

interface GigabitEthernet4/2

description Customer facing interface

switchport mode access

switchport access vlan 100

mls qos vlan-based

interface GigabitEthernet6/1

description Core facing interface

switchport mode trunk

switchport trunk allowed vlan 100

interface vlan 100

service-policy input markdown-ip

If a physical port is not configured for VLAN-based QoS, its traffic will
not be included in VLAN-based QoS, even if it has traffic in that VLAN.

Policing

� Defines a policy for traffic on a port or VLAN,
based on the rate at which traffic is received

� Based on a classic token bucket scheme
� Tokens added to bucket at fixed rate (up to max)
� Packets with adequate tokens are “in profile”: packet transmitted, tokens removed

from bucket
� Packets without adequate tokens are dropped or marked down

� Leaky Bucket Model
� Burst ~ depth of the bucket
� Rate ~ hole in the bucket

� Dual Leaky Bucket
� PIR, MaxBurst

Note! PFC2 uses Layer 3 packet size; PFC3 uses Layer 2 frame size

Policing Actions

� In-Profile traffic
�Forward

� Out-of-Profile traffic
�Mark-Down

– Modifying the priority

– Forwarding

�Drop

� Hardware interval
�0.25msec

Policing I.

Policing uses a concept of a token bucket for policing data – essentially data is only sent when

tokens exist in the bucket The following will try to explain how this works…

PFC

Token Bucket

T T

T T

T T

T T

Output

Port

Input

Port

Switch

1. At time interval T0, the bucket is loaded with

a full complement of tokens

PFC

T T

T T

T T

T T

Output

Port

Input

Port

Switch

2. When a packet arrives at the PFC, the number

of bits that make up the packet are counted

1 2

Data

Policing II.

PFC

T T

T T

T T

T T

Output

Port

Input

Port

3

3. The PFC checks the token bucket

Data

PFC

T T

T T

T T

T T

Output

Port

Input

Port

4

4. If the number of tokens in the bucket is >= the

number of bits in the packet, the packet can be

forwarded – if not, the packet is dropped

Data

Policing III.

PFC

T T

T

Output

Port

Input

Port

5

5. The tokens are removed from the

bucket

Data

6. The packet is sent by the PFC to its onward

destination – other packets will be forwarded in that

time interval is enough tokens exist

PFC

T T

T

Output

Port

Input

Port

6

Data

Policing IIII.

PFC

T T

T

Output

Port

Input

Port

7

7. At the end of the time interval, the

token bucket is replaced with a new

complement of tokens

8. The next packet will only be forwarded if there are

enough tokens in the bucket – and so goes the

cycle

PFC

T T

T

Output

Port

Input

Port

8

T

T

Data

T

T

Policing Example

police 100000000 26000

conform-action set-dscp-transmit

exceed-action drop

� policed rate of 100Mb/sec
�REPLENISHMENT RATE every 1/4000th of a second =
RATE / Interval = 100,000,000 / 4000 = 25,000 tokens every
1/4000th of a second

�Bucket Depth = BURST = 26,000 tokens

Policing Example

Arrival rate is 1Gig/s @ 64byte packets

…

224

312

912

400

Tokens at

end of

interval

…

224,688

224,400

224,912

224,400

Number of

bits that are

dropped

…

25,088

25,600

25,088

25.600

Number of

bits that can

be sent

…

25,312

25,912

25,400

26,000

Tokens at

Start of

interval

……And so on

49250,000T4

50250,000T3

49250,000T2

50250,000T1

How many

packets can

be sent?

Bits

clocked in

interval

Time

Interval

Policing Details

� Aggregate policers – Bandwidth limit applied cumulatively to all flows that
match the ACL
� Example: All FTP flows limited in aggregate to configured rate

� Microflow policers – Bandwidth limit applied separately to each individual
flow that matches the ACL
� Example: Each individual FTP flow limited to configured rate
� Leverages NetFlow table
� Ingress only
� Single leaky bucket model

� Policing action may reclassify and remark certain traffic

� Supervisor 2 and Supervisor 720 support INGRESS policing, on a per-
switchport, per-Layer 3 interface, or per-VLAN basis

� Supervisor 720 also supports EGRESS aggregate policing on a per-VLAN or
per-Layer 3 interface basis

Aggregate Policer

� Per interface
�Single interface

�Single class

� Shared/Named
�Multiple interface

�Multiple Class

Aggregate vs Microflow Policer

Uninterested traffic will bypass the flow policer

User Based Rate Limiting

� PFC3 feature
� PFC1 & PFC2 single flow mask

– When a microflow policer is enabled, other processes that use the flow mask
also have to use the same full flow mask.

� PFC3 four flow masks (two of them are reserved)

� Based on Netflow
� Source only

– Supported by PFC3 only

� Destination only
� Destination – Source
� Full

UBRL vs Microflow

FTP

WEB

Microflow Policer

1Mb Rate

FTP limited to 1Mb

WEB limited to 1Mb

FTP FTP limited to 1Mb

FTP

WEB

UBRL Policer

1Mb Rate
Total of FTP and Web

limited to 1Mb

Total of FTP and Web

limited to 1Mb

Netflow Masks

A given user who initiates a Telnet session and accesses an e-
mail server would initiate two separate flows

Full Flow Mask

Netflow Masks

Source IP only

The same user who initiated a Telnet and e-mail session would
now be seen as initiating a single flow

Netflow Masks

Destination IP only

In both cases, traffic from each server is considered to be part of
the same flow as the mask is, only using the destination address
as the unique flow identifier

UBRL Configuration – Example

� Two policers
�Uplink interface

– Connected to the Internet

– Input policer, flow-mask dst-only

�Downlink interface
– Connected to the Users

– Input policer, flow-mask src-only

UBRL Configuration – Example

access-list 101 permit ip 10.10.10.0
0.0.0.255 any

class-map Users-Outbound

match access-group 101

policy-map Users-Outbound

class Users-Outbound

police flow mask src-only 100000 …

int range fast4/1-48

service-policy input Users-Outbound

access-list 102 permit ip any
10.10.10.0 0.0.0.255

class-map Users-Inbound

match access-group 102

policy-map Users –Inbound

class Users-Inbound

police flow mask dest-only 100000 …

int gig 3/1

service-policy input Users-Inbound

Inside Network Internet

Applied to user ports

Source only Flow

Applied to uplink ports

Destination only Flow

Output Policer

� Not supported by PFC2
� Based on received frame

� Vlan interface
� L3 port
� Cannot be applied to switchport

– PFC3 knows only the egress Vlan and Line Card

� Implemented Parallel with Input Policy
� By default
� You can enable sequential processing on PFC-3B & PFC-3BXL

� An output policy is instantiated 1+N times, where 1
represents the PFC3 and N represents the number of DFCs
� show mls qos ip

� Aggregate Policer only

Configuring Policing – MQC

Aggregate Policer
Router(config)#mls qos aggregate-policer <name>

Class-map
Router(config)#class-map class-map-name

Router(config-cmap)# match <ip precedence | ip dscp | access-group>

Policy-map Class Action
Router(config)#policy-map policy-map-name

Router(config-pmap)#class class-name

Router(config-pmap-c)#police <<flow|aggregate> | set | trust>

Service-policy
Router(config)#interface interface-name

Router(config-if)#service-policy <input | output> policy-map-name

Congestion Avoidance

Weighted Random Early Detection (WRED):
� Congestion AVOIDANCE mechanism
� Weighted because some classes of traffic are more important or

sensitive than others
� Random in that the packets to discard are randomly chosen

within a class
� Which classes are more subject to discards is configurable

� Prevents global TCP window synchronization and other
disruptions

WRED Thresholds

� Each queue has multiple WRED thresholds
� Low threshold is the point at which random discards
will begin for a particular class

� High threshold is the point at which tail-drop for the
particular class begins

� As buffers fill…
�Rate of discards increases for traffic associated with lower
thresholds

�Higher thresholds are reached, and new traffic classes are
subject to random discards

WRED Operation

� Two classes,
two thresholds each:
� Gold

– 100% high
– 60% low

� Blue
– 80% high
– 30% low

� When queue depth exceeds 30%, some random blue packets are dropped
� When queue depth exceeds 60%, drop rate for blue packets increases and gold packets

become subject to random drops
� When queue depth exceeds 80%, tail-drop occurs for blue packets (all exceed packets

dropped), and drop rate for gold packets increases

WRED Configuration Commands

wrr-queue random-detect queue-id

wrr-queue random-detect

{max-threshold | min-threshold}

queue-id threshold-percent-1 ... threshold-percent-n

Output Queue Scheduling

� Scheduling based on COS

� Implements tail-drop or WRED thresholds

� Queue structure example: 1p3q8t
�One strict-priority queue, three standard queues with eight
WRED thresholds each

Output Queue Scheduling Operation

Output Queuing I.

� Weighted Round Robin (WRR)
� Uses ratio to determine number of packets to transmit from one queue

before moving to the next queue
� Higher weight = more packets transmitted from that queue
� Unfair with variable-length packets in different queues

� Deficit WRR
� Also uses ratio, but tracks bytes in each queue using deficit counter
� Packet(s) transmitted during queue servicing only if size of next packet to

transmit is <= deficit counter Deficit counter “refreshed” at beginning of
each queue servicing period

� Results in fair scheduling over time
� 1p3q1t, 1p2q1t, 1p3q8t, 1p7q4t, and 1p7q8t

Output Queuing II.

� Shaped Round Robin
� Sup32 only, Integrated port only
� WS-X6708-3C, 3CXL

– 200MB buffer/port

� Shaping instead of policing

� Strict Priority Queuing
� Only when the strict priority queue is empty will the scheduling process

recommence sending packets from WRR queues

Output Queuing Configuration
Commands

wrr-queue [bandwidth | shape]

show queueing interface

További QoS kérdések

� FlexWan
�PA

� Optical Service Module
�Standard
�Enhanced

� SPA Interface Processor
�SIP-200, SIP-400
�SIP-600

� Általában a hagyományos MQC eszközök

Sources

� Cisco Catalyst 6500 Series Switches White Papers
http://www.cisco.com/en/US/products/hw/switches/ps708/prod_white_papers_list.html

� Networkers 2004
http://www.cisco.com/networkers/nw04/presos/rst.html

� Command Reference

Kérdések & Válaszok

Balla Attila
balla.attila@synergon.hu

