## cisco



# **Segment Routing**

Berényi Áron

#### Deployment

• In CY2015, SR will be deployed in all of these markets



WEB

SP Core/Edge

SP Agg/Metro

Large Entreprise

uluilu cisco

#### Agenda

- Technology Overview
- Use Cases
- Control and Data Plane
- Traffic Protection





# **Technology Overview**

### **Segment Routing**

#### Source Routing

- the source chooses a path and encodes it in the packet header as an ordered list of segments
- the rest of the network executes the encoded instructions without any further per-flow state
- Segment: an identifier for any type of instruction
  - forwarding or service



#### **IGP Prefix Segment**

- Shortest-path to the IGP prefix
- Global
- 16000 + Index
- Signaled by ISIS/OSPF



uluilu cisco

# **IGP Adjacency Segment**

- Forward on the IGP adjacency
- Local
- 1XY
  - X is the "from"
  - Y is the "to"
- Signaled by ISIS/OSPF



uluilu cisco

#### **BGP Prefix Segment**

- Shortest-path to the BGP prefix
- Global
- 16000 + Index
- Signaled by BGP





### **BGP Peering Segment**

- Forward to the BGP peer
- Local
- 1XY

uluilu cisco

- X is the "from"
- Y is the "to"
- Signaled by BGP-LS (topology information) to the controller



## **WAN Automation Engine**

- WAE collects via
   BGP-LS
  - IGP segments
  - BGP segments
  - Topology





#### An end-to-end path as a list of segments



- WAE computes that the green path can be encoded as
  - 16001
  - 16002
  - 124
  - 147

uluilu cisco

 WAE programs a single per-flow state to create an applicationengineered end-toend policy

## **Segment Routing Standardization**

- IETF standardization in SPRING working group
- Protocol extensions progressing in multiple groups
  - IS-IS
  - OSPF
  - PCE
  - IDR
  - 6MAN
- Broad vendor and customer support

#### Sample IETF Documents

Segment Routing Architecture (draft-ietf-spring-segment-routing)

Problem Statement and Requirements (draft-ietf-spring-problem-statement)

IPv6 SPRING Use Cases (draft-ietf-spring-ipv6-use-cases)

Segment Routing Use Cases (draft-filsfils-spring-segment-routing-use-cases)

Topology Independent Fast Reroute using Segment Routing (draft-francois-spring-segment-routing-ti-lfa)

IS-IS Extensions for Segment Routing (draft-ietf-isis-segment-routing-extensions)

OSPF Extensions for Segment Routing (draft-ietf-ospf-segment-routing-extensions)

PCEP Extensions for Segment Routing (draft-ietf-pce-segment-routing)

#### Close to 30 IETF drafts in progress

## **Segment Routing Product Support**

- Platforms: ASR9000, CRS-1/CRS-3, ASR1000, ASR9XX, ISR4XXX
- IS-IS IPv4/IPv6
  - Node/Adjacency SID adertisement
  - LDP interworking (mapping server/client)
  - Traffci protection (Topology Independent LFA link protection)
- OSPFv2
  - Node SID advertisement
  - Traffic Protection (LFA)
- SR Traffic Engineering manual/PCEP
- OAM ping/trace

#### iliilii cisco

#### Application Engineered Routing Journey Adding value at your own pace







## **Use-Cases**



cisco

#### Seamless interworking with LDP



#### Topology-Independent LFA (TI-LFA)

- 50msec FRR in any topology
- IGP Automated
  - No LDP, no RSVP-TE
- Optimum
  - Post-convergence path
- No midpoint backup state
- Detailed operator report
  - S. Litkowski, B. Decraene, Orange
- Mate Design
  - How many backup segments
  - Capacity analysis



cisco

# **Optimized Content Delivery**

- On a per-content, per-user basis, the content delivery application can engineer
  - the path within the AS
  - the selected border router
  - the selected peer
- Also applicable for engineering egress traffic from DC to peer
  - BGP Prefix and Peering Segments



#### **Application Engineered Routing**

- Per-application flow engineering
- End-to-End
  - DC, WAN, AGG, PEER
- Millions of flows
  - No signaling
  - No midpoint state
  - No reclassification at boundaries



ululu cisco

#### **Application Engineered Routing**



- Per-application
   flow engineering
- End-to-End
  - DC, WAN, AGG, PEER
- Millions of flows
  - No signaling
  - No midpoint state
  - No reclassification at boundaries

uluilu cisco





# **Control Plane and Data Plane**

# MPLS Control and Forwarding Operation with Segment Routing



### **SID Encoding**

#### Prefix SID

- SID encoded as an index
- Index represents an offset from SRGB base
- Index globally unique
- SRGB may vary across LSRs
- SRGB (base and range) advertised with router capabilities
- Adjacency SID
  - SID encoded as absolute (i.e. not indexed) value
  - Locally significant
  - Automatically allocated for each adjacency

SR-enabled Node

Adjacency SID = 24000. Advertised as Adjacency SID = 24000

SRGB = [ 16000 - 23999 ]. Advertised as base = 16,000, range = 7,999 Prefix SID = 16041. Advertised as Prefix SID Index = 41

uluilu cisco

#### **SR IS-IS Control Plane Overview**

- Level 1, level 2 and multi-level routing
- Prefix Segment ID (Prefix-SID) for host prefixes on loopback interfaces
- Adjacency SIDs for adjacencies
- Prefix-to-SID mapping advertisements (mapping server)
- MPLS penultimate hop popping (PHP) signaling
- MPLS explicit-null label signaling

### **IS-IS Configuration**

- Required
  - Wide metrics
  - SR enabled under address family IPv4 unicast
- Optional
  - Prefix-SID configured under loopback(s) AF IPv4
- MPLS forwarding enabled automatically on all (non-passive) IS-IS interfaces
- Adjacency-SIDs are automatically allocated for each adjacency

#### **Configuring Segment Routing for IPv4 Using IS-IS (Cisco IOS XR)**



#### **Configuring Segment Routing for IPv6 Using IS-IS (Cisco IOS XR)**



#### **SR OSPF Control Plane Overview**

- IPv4 Prefix Segment ID (Prefix-SID) for host prefixes on loopback interfaces
- MPLS penultimate hop popping (PHP) signaling
- MPLS explicit-null label signaling

## **OSPF Configuration**

- OSPFv2 control plane
- Required
  - Enable segment-routing under instance or area(s)
    - Command has area scope, usual inheritance applies
  - Enable segment-routing forwarding under instance, area(s) or interface(s)
    - Command has interface scope, usual inheritance applies
- Optional
  - Prefix-SID configured under loopback(s)
- MPLS forwarding enabled on all OSPF interfaces with segment-routing forwarding configured

#### **Configuring Segment Routing for IPv4 Using OSPF (Cisco IOS XR)**

![](_page_30_Figure_1.jpeg)

#### **MPLS Data Plane Operation**

## Prefix SID SRGB [16,000 – 23,999] Swap X Y Payload Payload

- Packet forwarded along IGP shortest path
- Packet may be leverage ECMP load balancing
- Swap operation performed on input label
- Input label (X) and output label (Y) will have same value when downstream neighbor has same SRGB
- Penultimate hop may perform a pop operation (PHP) if signaled by

# Adjacency SID SRGB [16,000 – 23,999 ] Adjacency SD = X Pop

Packet forwarded along IGP adjacency

Payload

- Pop operation performed on input label
- Input topmost label (X) and output label (Y) may or may not have same value
- Penultimate hop always pops last adjacency SID

© 2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Payload

#### **MPLS Data Plane Operation (Prefix SID)**

![](_page_32_Figure_1.jpeg)

# MPLS Data Plane Operation (Adjacency SIDs)

![](_page_33_Figure_1.jpeg)

## **MPLS LFIB with Segment Routing**

- LFIB populated by IGP (ISIS / OSPF)
- Forwarding table remains constant (Nodes + Adjacencies) regardless of number of paths
- Other protocols (LDP, RSVP, BGP) can still program LFIB

![](_page_34_Figure_4.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

# **Traffic Protection**

#### Topology Independent LFA (TI-LFA) – Benefits

- 100%-coverage 50-msec link and node protection
- Simple to operate and understand
  - · automatically computed by the IGP
- Prevents transient congestion and suboptimal routing
  - leverages the post-convergence path, planned to carry the traffic
- Incremental deployment
  - also protects LDP traffic

#### **Topology Independent LFA – Implementation**

- Leverages existing and proven LFA technology
  - P space: set of nodes reachable from node S (PLR) without using protected link L
  - Q space: set of nodes that can reach destination D without using protected link L
- Enforcing loop-freeness on post-convergence path
  - Where can I release the packet?

At the intersection between the post-convergence shortest path and the Q space

• How do I reach the release point?

By chaining intermediate segments that are assessed to be loop-free

#### **TI-LFA – Zero-Segment Example**

- TI-LFA for link R1R2 on R1
- Calculate LFA(s)

uluilu cisco

- Calculate post-convergence SPT
- Find LFA on post-convergence SPT
- R1 will steer the traffic towards LFA R5

![](_page_38_Figure_6.jpeg)

Default metric:10

#### **TI-LFA – Single-Segment Example**

- TI-LFA for link R1R2 on R1
- Calculate P and Q spaces
  - They overlap in this case
- Calculate post-convergence SPT
- Find PQ node on post-convergence SPT
- R1 will push the prefix-SID of R4 on the backup path

![](_page_39_Figure_7.jpeg)

### **TI-LFA – Double-Segment Example**

- TI-LFA for link R1R2 on R1
- Calculate P and Q spaces
- Calculate post-convergence SPT
- Find Q and adjacent P node on postconvergence SPT
- R1 will push the prefix-SID of R4 and the adj-SID of R4-R3 link on the backup path

![](_page_40_Figure_6.jpeg)

# Configuring Topology Independent Fast Reroute for IPv4 using Segment Routing and IS-IS (Cisco IOS XR)

![](_page_41_Figure_1.jpeg)

# Configuring Topology Independent Fast Reroute for IPv6 using Segment Routing and IS-IS (Cisco IOS XR)

![](_page_42_Figure_1.jpeg)

#### Conclusion

- Simple routing extension to enable source routing
- Packet path is determined by prepended segment identifiers (one ore more)
- Dataplane agnostic (MPLS, IPv6)
- Nework Scalability and agility by reducing network state and simplifying control plane
- Traffic protection with 100% coverage with more optimal routing

# Thank you

# 

| 1 | 1. |   | 1 |  |
|---|----|---|---|--|
| C | ۱S | С | 0 |  |

# CISCO TOMORROW starts here.

![](_page_46_Picture_0.jpeg)

![](_page_46_Picture_1.jpeg)

# **SR and LDP Interworking**

#### LDP to SR

- When a node is LDP capable but its nexthop along the SPT to the destination is not LDP capable
  - no LDP outgoing label
- In this case, the LDP LSP is connected to the prefix segment
- C installs the following LDP-to-SR FIB entry:
  - incoming label: label bound by LDP for FEC Z
  - outgoing label: prefix segment bound to Z
  - outgoing interface: D

uluilu cisco

This entry is derived automatically at the routing layer

![](_page_47_Figure_9.jpeg)

#### SR to LDP

- When a node is SR capable but its next-hop along the SPT to the destination is not SR capable
  - no SR outgoing label available
- In this case, the prefix segment is connected to the LDP LSP
  - Any node on the SR/LDP border installs SR-to-LDP FIB entry(ies)

![](_page_48_Figure_5.jpeg)

## **Mapping Server**

- A wants to send traffic to Z, but
  - Z is not SR-capable, Z does not advertise any prefix-SID
  - → which label does A have to use?
- The Mapping Server advertises the SID mappings for the non-SR routers
  - for example, it advertises that Z is 16068
- A and B install a normal SR prefix segment for 16066
- C realizes that its next hop along the SPT to Z is not SR capable hence C installs an SR-to-LDP FIB entry
  - incoming label: prefix-SID bound to Z (16066)
  - outgoing label: LDP binding from D for FEC Z
- A sends a frame to Z with a single label: 16066

![](_page_49_Figure_11.jpeg)

## **Active Mapping Policy Preferences**

#### Active SID Mapping policy

- A set of non-overlapping SID mapping entries derived from locally configured SID mappings and SID mappings received from other nodes
- Backup SID Mapping policy
  - SID mapping entries that overlap with at least one Active SID mapping entry
- When two or more SID mapping entries overlap, which one will be used?
  - Sort all overlapping entries according to preference rules\*
    - Locally configured entries are treated the same as remote entries
  - Only the most preferred entry is inserted in the Active SID mapping policy
  - The other SID-entries are inserted in the Backup SID mapping policy

\* Highest router-id > smallest prefix numerical value > smallest first SID value > largest range > latest received

uluilu cisco

#### Configuring a Mapping Server for SR and LDP Interworking for IPv4 Using IS-IS (Cisco IOS XR)

![](_page_51_Figure_1.jpeg)

**CISCO** 

#### Configuring a Mapping Client for SR and LDP Interworking for IPv4 Using IS-IS (Cisco IOS XR)

net 49.0001.1720.1625.5001.00
address-family ipv4 unicast
metric-style wide
segment-routing mpls
segment-routing prefix-sid-map receive

```
!
```

```
interface Loopback0
passive
address-family ipv4 unicast
prefix-sid absolute 16041
!
```

```
interface GigabitEthernet0/0/0/0
point-to-point
address-family ipv4 unicast
'
```

uluilu cisco Construct active mapping policy using remotely learned and locally configured mappings (mapping client)