
with Cisco Network Service Orchestrator

Multi-domain
Service Orchestration
Gabor Szabo
gabszabo@cisco.com
Version 1.2

• Theory & Concepts
• Cisco NSO inroduction
• Demonstration: simple service
• Use-Cases

Agenda

• After a 3-day training

• Every KIFÜ network engineer can develop and deploy services

• In multi-vendor environment
• In a multi-domain network
• Within two week (max)

Statement

Service Automation:
Introduction to Theory

Everything is Model Based
• Network Devices Configuration

• Routers, Switches, Load-Balancers, etc.

• Services Configuration
• VPN, Routing, etc.

• System Configuration
• Users, Groups, Permissions, etc.

Router# show running-config

…

…

interface Ethernet1/1

ip address 192.168.1.1/24

interface Ethernet1/2

ip address 192.168.2.1/24

C interface

L Ethernet K name C ip

L address

L prefix

• Human readable, and easy to learn representation

• Hierarchical configuration data models

• Reusable types and groupings (structured types)

• Extensibility through augmentation mechanisms

• Supports definition of operations (RPCs)

• Formal constraints for configuration validation

• Data modularity through modules and sub-modules

• Well defined versioning rules

YANG – A Data Modeling Language for
Networking

6

Why you should care:
YANG is a full, formal
contract language with
rich syntax and semantics
to build applications on

YANG Building Blocks
• Leaf

• A node in the data tree
• Assigned with a datatype and has a value
• Has no child nodes

• Container
• Does not have a value
• Holds one or more child nodes in the data tree

• List
• Has a key node (leaf node) which serves as a UID.
• Groups multiple similar elements
• Each element may consist of multiple nodes of various types.

C interface

L Ethernet K name C ip

L address

L prefix

L address

C ip

L Ethernet K name

Service Abstraction and the NSO Magic

• NSO enables creating service-aware applications, e.g. VPN service

• Service attributes stored in service data model and used to configure multi-vendor devices

• Mapping logic is needed to map
service models to device models
• XML template and/or Java/Python code
• All service- and device-specific information

are stored in data models and mapping logic
• Automation core engine is not aware of

technology, vendor or service

• Development needed for service “create” only
• Modification and decommission

created automatically

vrf

interface

encapsulation

ip address

vrf membership

config

rd

Device
Model

vpn

vrf name

pe

Interface	to	ce

ip address

Servic
e

Model

site

Device Configuration Consistency

• Configuration is protected by a transaction

• Service instantiation / modification / decommission is
treated as an atomic action.
• All-or-Nothing approach.
• Implemented all-at-once.

• IETF network management protocol

• Distinction between configuration and state data

• Multiple configuration data stores (candidate, running, startup)

• Configuration change validations

• Configuration change transactions

• Selective data retrieval with filtering

• Streaming and playback of event notifications

• Extensible remote procedure call mechanism

NETCONF – A Protocol to Manipulate
Configuration

10

Why you should care:
NETCONF provides the
fundamental programming
features for comfortable and
robust automation of network
services

Introducing Network Programmability

• Our challenge?
• Multi-Vendor Networks
• Multiple protocols – CLI, Netconf, etc.

• Network Element Drivers handle device communication
based on device OS

• Pluggable Custom Service Models

• Instantly available APIs

API

Network
Engineer

Cisco
NSO

Cisco NSO Introduction

Service Manager

Multi-Vendor Network

Network
Engineer EMS/NMS

NETCONF REST CLI Web UI SNMP JAVA/Javascript

OSS/BSS

NSO

AAA Core
Engine

NETCONF SNMP REST CLI WS

Network Element Drivers

Mapping
Logic Templates

Fast Map

Device ManagerNotification ReceiverAlarm Manager

Package
Manager

Script
API

Developer
API

NSO Logical Architecture

Device
Models

Service
Models

• Transactions and rollbacks

• Configuration synch both-ways

• Configuration validation

• Device Configuration database
• Stores the configuration model
• Raw configuration is NOT stored
• Proprietary, not relational
• Can be accessed by an API

• Talks to devices via
Network Element Drivers (NEDs)

Device Manager

Service ManagerNSO

AAA Core Engine
Mapping Logic Templates

Fast Map

Device ManagerNotification ReceiverAlarm Manager

Service
Models

Package
Manager

Device
Models

NEDs - Multi-Vendor Support
More than 65 and growing fast!

Entire Devices Configuration in a single Show!
admin@nso# show running-config devices device config
devices device nx0

config
...
nx:interface Ethernet1/1
switchport
no shutdown

!
...

devices device nx1
config

...
nx:interface Ethernet1/1
switchport
no shutdown

!
...

CLI

Network Element Drivers

Device Manager

Example: Verifying Consistent Configuration
gabszabo@ncs# show running-config devices device config ios:vrf definition NAT-VPN rd
devices device 7604-1
config
ios:vrf definition NAT-VPN
rd 10000:201
!
!
!
devices device 7604-2
config
ios:vrf definition NAT-VPN
rd 10000:201
!
!
!

(...)

devices device budlab-asr1k
config
ios:vrf definition NAT-VPN
rd 10000:201
!
!
!

CLI

Network Element Drivers

Device Manager

NSO Main Features
NSO Main Features
• Model-based architecture
• Transactional guarantees
• In-memory storage of

configuration states for all
services and all devices

• FastMap* algorithm for
service-layer CRUD
operations

• Reactive FastMap*

NSO

* Patent No.: US 8,533,303 B2

Multivendor physical/virtual Layer 2, Layer 3, and Layer 4-7 Network

OSS/BSS

Device
Models

Service
Models

NSO

NSO #1: Model-Based Architecture

YANG data models for:
• Network services
• Network topology
• Network devices

YANG data models drive:
• Northbound APIs
• User interfaces
• Southbound command sequences

Benefits:
• Can be used for all types of

services and all types of networks
Multivendor physical/virtual Layer 2, Layer 3, and Layer 4-7 Network

NSO #1: Model-Based Architecture

NED

Service
Models

Device
Models

Diff at runtime

Diff at runtime

In contrast with hard-coded CLI templates

Run-time rendering

No hard-coded templates

NSO knows the actual
device configuration

Provision only the difference

Transactional
Integrity

NSO #2: Transactional Guarantees

Transactional guarantees:
• Help ensure fail-safe operations

(automated handling of
exceptions)

• Keep accurate copy of
network configuration state
in NSO at all times

Benefits:
• Automation can be based on

accurate real-time view of service
and network state

• Much higher degree of
automation possible

OSS/BSS

NSO

Multivendor physical/virtual Layer 2, Layer 3, and Layer 4-7 Network

CREATE SERVICE
UPDATE SERVICE

DELETE SERVICE
REDEPLOY SERVICE

FastMap*

NSO #3: FastMap* Algorithm
FastMap:
• Only the CREATE operation needs

to be specified
• UPDATE, DELETE and REDEPLOY

operations are automatically
generated and compute minimal
change set needed

Benefits:
• Reduces service implementation

code by two orders of magnitude
• Supports modifications of services

at runtime
* Patent No.: US 8,533,303 B2

NSO

Multivendor physical/virtual Layer 2, Layer 3, and Layer 4-7 Network

FastMAP: Spying on the CREATE Method

Service
Model

C
re

at
e

Device
Models

Model-to-model
mapping

DB API to DB API
mapping

NSO

NSO stores the device level undo
information (reverse-diff) for each service
instance as a binary object inside the
service instance

Service
Instance

Device
Changes

Undo

To devices

NSO Database APIs

NSO Database APIs

FastMAP: DELETE is Easy

Service
Model

D
el

et
e

Device
Models

NSO Database APIs

NSO Database APIs

Delete is easy.
Apply undo info.

NSO

Service
Instance

Device
Changes

Undo

To devices

UPDATE is Delete & Create – In Memory

Service
Model

C
re

at
e

Device
Models

First delete,
but only in memory

Then run same
create method

as always

NSO

Service
Instance

Device
Changes

Undo

Actual changes to
devices

NSO Database APIs

NSO Database APIs

Diff before/after

NSO updates the device level undo
information for the service instance

NSO Main Feature 4: Reactive FastMap*

Benefits:
One algorithm supporting:
• Provisioning
• Orchestration
• Elasticity
• Virtual machine and

VNF mobility
• Self-healing network

NSO Changed
network state
triggers
service redeploy

REDEPLOY
SERVICE

* Patent No.: US 8,533,303 B2

26

CREATE SERVICE
UPDATE SERVICE
DELETE SERVICE

FastMap*
NSO

Multivendor physical/virtual Layer 2, Layer 3, and Layer 4-7 Network

• Service modeling
• Mapping to device model
• Service activation
• Service modification
• Service decommissioning

Service Manager

Service ManagerNSO

AAA Core Engine
Mapping Logic Templates

Fast Map

Device ManagerNotification ReceiverAlarm Manager

Service
Models

Package
Manager

Device
Models

Implementation alternatives
• Java/Python only

Most expressive power, but also most work
Make calls to external applications
Execute complex algorithms

• Template only
Only simple mappings
Implemented in minutes (e.g. in CLI)

• Java/Python instantiating template
Do the complex computations in Java/Python
Apply the bulk of the settings in template
Java/Python exports variables to the template

Alternate Mapping Approaches

Service
Model

Device
Models

M
ap

pi
ng

Implemented in
• Java/Python
• Template
• Java/Python +

Template

Entire Services Configuration in a single
Show!

admin@nso# show running-config services
services fabricpath DC01

spine dc01spine1
switch-id 105
...

spine dc01spine2
switch-id 106
...

services vpc nx1-nx2
devices nx1 nx2
peer-gateway
...

services vpc nx3-nx4
devices nx3 nx4
peer-gateway
...

CLI

Network Element Drivers

Service Manager

Device Manager

• Service-aware

• Network-wide

• Juniper / Cisco XR style

• Powertool

• Helps keep the current domain experts

• Rich editing with tab-completion for commands,
static elements and dynamic instances

• History, hints, help

• Extensible with custom/external commands,
wizards

NSO CLI

CLI

Network
Engineer

NSO

• Relies on verbs of transport layer:

• HTTP 1.1
• GET : get resources
• PUT : replace existing resource
• POST : create resource
• DELETE : delete resource
• PATCH (RFC5789) : modify existing resource
• HEAD, OPTIONS

• Stateless, client-server

• Hyperlinked, just like the web

• XML or JSON as data containers

• Links to available data-stores and operations

NSO REST

$curl –u admin:admin –s http://localhost:8008/api

• /api/running
• /api/candidate
• /api/operations
• /api/operational
• /api/rollback

REST

OSS/BSS

NSO

Demonstration:
Interface MTU Service

Contents of a Service Package
• Service Model

• YANG!

• Mapping Logic

• Java, Python, XML

• How service parameters map to device configuration

1

Create a Service
Package Skeleton

2
Build a YANG for the MTU

Service

3

Create a template XML

4

Test the Service

Create Service
instance

Modify Service
Instance

Delete Service
Instance

1

2

3

Creating a Service Package

Configure a device
and sync with NSO

1

3 Plant variables in
XML

2
Output device
configuration in
XML format

Interface MTU Service Model

C device

L name

C GigabitEthernet

L name

L mtu

+--rw device
 +--rw name? -> /ncs:devices/device/name
 +--rw GigabitEthernet
 +--rw name? String
 +--rw mtu? Uint16

Mapping YANG model to XML Template

How To Get the Initial Template?
Ask NSO J

admin@ncs# show running-config devices device ios0 config ios:interface GigabitEthernet 0/1 mtu
devices device ios0
config
ios:interface GigabitEthernet0/1
mtu 3000
exit
!
!

admin@ncs# show running-config devices device ios0 config ios:interface GigabitEthernet 0/1 mtu | display xml
<config xmlns="http://tail-f.com/ns/config/1.0">
<devices xmlns="http://tail-f.com/ns/ncs">
<device>
<name>ios0</name>
<config>
<interface xmlns="urn:ios">
<GigabitEthernet refcounter="2" backpointer="[/ncs:services/mtu0:mtu0[mtu0:name='3k']]" >
<name>0/1</name>
<mtu refcounter="2" original-value="4000">3000</mtu>

</GigabitEthernet>
</interface>
</config>

</device>
</devices>

</config>
admin@ncs#

How to handle multivendor networks?
XML namespaces

Platform-specific
mapping for the
same function

Services: Recording of Modification
admin@ncs(config)# services mtu0 3k device name ios0 GigabitEthernet name 0/1 mtu 3000
admin@ncs(config-mtu0-3k)# commit dry-run
Cli
 devices {
 device ios0 {
 config {
 ios:interface {
 GigabitEthernet 0/1 {
 - mtu 4000;
 + mtu 3000;
 }
 }
 }
 }
 }
 services {
 + mtu0 3k {
 + device {
 + name ios0;
 + GigabitEthernet {
 + name 0/1;
 + mtu 3000;
 + }
 + }
 + }
 }

admin@ncs# show services mtu0 3k device-modifications
device-modifications devices {
 device ios0 {
 config {
 ios:interface {
 GigabitEthernet 0/1 {
 - mtu 4000;
 + mtu 3000;
 }
 }
 }
 }
 }

Service Query via REST API

Get Device Modifications via REST API

Real-world Use-Cases

Core Network

Branch

Access circuit

VNF config and control

Portal Infrastructure (use case specific)

Data Center

NCS (NFV orchestration and configuration)
PNP

ESC

WS

FW

CloudVPN

SoftBank "Virtual Gateway" Project Goal

RFI Goal: Virtualizing Managed Gateway

Figure 2.2.1 Cloud Management
User Portal

Per-tenant
Overlay
Network over
multiple Data
Center
Sites

Multi-tenant
IaaS Cloud Platform

Dashed-circle:
Scope of RFI

Gateway to Existing
L2/L3 VPN Network

Virtual Network
Functions (like FW,
UTM, …)

SOFTBANK TELECOM
Business: Telecommunications
Headquarters: Tokyo
Chairman & CEO: Masayoshi Son
Founded: October, 1984
Annual Revenue: 372,900 million yen
Number of Employees: 4,400 (Approx.)

à Huge OPEX on service delivery, especially in human costs

• Manual provisioning of devices

• Various options offered to end users to allow flexible customization

à Increased pressure from enterprise customers, with keeping current
service levels/menus

Cisco NSO

3rd Party NMS

Multi Vendor Service Model

ASR9000 ASR903 ASR901

7600

device

VPLS
E-line
E-LAN
L3 VPN
Others

device

IOS-XR NED3rd Party NMS NED IOS NED

Existing BSS
Existing OSS Service

Provisioning and Inventory, If Present

Other NED

Other

Custom GUI

NSO for Cisco and 3rd Party Vendor’s NMS

• After a 3-day training

• Every KIFÜ network engineer can develop and deploy services

• In multi-vendor environment
• In a multi-domain network
• Within two week (max)

Statement

Are you believing now?

